Differential analysis of fluid flow

Sometimes the control volume of interest is infinitesimally small
(a point in space rather than to a 2D or 3D volume)

- Differential analysis rather than finite control volume analysis



Types of motion and deformation for a fluid element.
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Velocity and acceleration field

Velocity: V=uY+V}:+WE
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where the gradient operator is 6():



Translation of a fluid element.
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If the velocity, V., is the same for all fluid elements, we have translation

without deformation



Linear deformation of a fluid element.
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Angular motion and deformation of a fluid element.
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Rotation vector and vorticity
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Example: vorticity
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Angular deformation and shearing strain
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Differential form of the conservation of mass equation.
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Example: 3D steady, incompressible flow
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Velocity components in cylindrical polar coordinates.
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Stream function
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Stream function property #1
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Stream function property #2
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Stream function in cylindrical coordinates
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Example: stream function
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Conservation of linear momentum
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Forces acting on a differential element
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Double subscript notation for stresses.
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Surface forces in the x direction acting on a fluid element.
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Equations of motion

OF =om-a,
Newton’s 2nd law: OF =om-a,  where  6m=ps5 0,
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Note: these are general equations of motion for solids and fluids




Inviscid flow
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Euler’s equations for inviscid flow

For inviscid flow: o.=-p and TU_:O

So, the general equations of motion become:

Leonhard Euler
(1707-1783)




Irrotational flow
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Examples of rotational and irrotational flow
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The Velocity Potential
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Stream Function and Velocity Potential

Relation to V: Derives from: Applies to:

Stream function, y u= a&y_w Continuity 2-D flows
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Potential flow
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Velocity potential in cylindrical coordinates
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Example on potential flow
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Viscous flow

Equations of motion in cartesian coordinates:
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The equations of motion include stresses (oj) and velocities (u, v and w)

We need a relationship between stresses (o0j and velocities (u, v and w)



Stress-deformation relationships

For Newtonian, incompressible fluids, stresses are linearly related to deformations
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Navier-Stokes equations (cartesian)
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Stress-deformation relationships
for an incompressible fluid (cylindrical)

Normal stresses:

Shearing stresses:
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Navier-Stokes equations (cylindrical)

r, 8 and z momentum equations:
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Simple solutions for viscous, incompressible fluids

 Principal difficulty: nonlinearities from the convective acceleration terms.
» Exact solution exist only for few cases

1) Steady, laminar flow between parallel plates
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Steady, laminar flow between parallel plates (cont’d)
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Steady, laminar flow between parallel plates (cont’d)
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Steady, laminar flow between parallel plates (cont’d)
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Steady, laminar flow between parallel plates (cont’d)
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Couette flow

plate 7_/5 /nffj/cu‘/ow 4/ X =27 07271 Fe a7 ///é/f:
|
Y 7 U = £ "7 /2—/- f/)/ + <5 )
‘ ,?/¢ X
| / 2
= U = ,.L/ZE L 4 C;A
VR £
i =, = U _ L7IPL @)
b ,Z/¢ x
/ 2 ox >/ -+ ~ ) //{_ 2 zé)/
_ U /
- 28 (v 4)

or /@ noN- /éweﬁf/awa/ ,4/;;7:

%-—_2{ &/D/P Y /14 _ AZ/D?
7’[;—2%7/2x b/ ) Lot P -

— pr—

Ape U 2%




Couette flow
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Example on plane Couette flow

Zé/é 7)70//? /e///'ga/g/ Z?Wa'r/{ W///
1 i e Constaamt yf%a'é({ ”, i dragy g wtbg

l a JSeowns %/’ A o or resrervolr
g

=
T

Fiond 22 67&/5:3‘/'09? Ao A d‘//ezzye /e%déq

ol Sbe %0"/ %e)’,

//Af 0?74/ Vc’%c/' 507?7/70774’%7’ /Y / Z(=vu——-0)

— O ﬁe.crz(/e aée S 270
=3 ch/j /9 Ahe Hori2o7)

/7 Sexr7re

Z - P00 7N E?74L777 ! /D

—_— 0

F
2l

577'7(5 F=0 xf %/c’ 74/”7 /’477‘(/’7éfé€ v/ 44 7// azrr
(e Mma?a/c//c) = =0 erery'n/écre_ Jor Abe /dn
—_— 7




-+ Example on plane Couette flow
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Example on plane Couette flow
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-+ Example on plane Couette flow
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Steady, laminar flow in a horizontal tube: (Hagen-Poiseuille)
‘g Mlomentum in 2: 0 = _ 2P + f z 2 ﬁ?ﬁ)j

D2 r 2r -

=L 20 122 or_ )
r or 2r e D2 27
= 2—/”% - L P,
2r 2r o 22
= e g o 2 o L7, g
— =, & br + & (z)
?0%”%4:/7 @W%ﬁbﬂf;
Y it 74”7"7‘& & r=o = <& =0 (2)
%G=° @ r=xX = &G-= —,_/_?_P:ZZ' ()
Fpe 02
- 7/22 /r} = — ._'_K—/Z (ZZ,_ ra) 74/—4&'/0/‘4 _____ S
Gpe 22 Profle




Poiseuille’s law
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Example: flow around a rotating cylinder
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Steady, axial, laminar flow in an annulus

Derive expressions for:

a) the axial velocity profile, u(r)

b) the flow rate, Q

c) the shear stress at the outer wall, 1y

Assuming developed flow, the x-momentum equation of the Navier-Stokes equations is given by:

10( ou 1 dp
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Integrating twice we obtain u(r)=——r +¢ lnr+02 (2)
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Applying the boundary conditions u(r=r;) = u(r=ro) = 0, we come up with the final expression for the velocity distribution:
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The shear stress T acting on the arterial wall is givenby 1= —pa— (5)
r r=r,
op 172 —r
which, using Eq. 3 for u(r), yields T=———| 2r, +— (6)
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To get a “better feeling” of the magnitude of intimal shear stress, it is convenient to normalize it with respect to the shear stress
under laminar flow for an open artery and for the same flow Q. This is given by Poiseuille’s law:
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Hence, we can write:
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