
Differential analysis of fluid flow

Sometimes the control volume of interest is infinitesimally small  
            (a point in space rather than to a 2D or 3D volume) 

à Differential analysis rather than finite control volume analysis 



Types of motion and deformation for a fluid element.



Velocity and acceleration field
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Translation of a fluid element.

If the velocity, V, is the same for all fluid elements, we have translation 
without deformation



Linear deformation of a fluid element.



Angular motion and deformation of a fluid element.



Rotation vector and vorticity





Example: vorticity



Angular deformation and shearing strain



Differential form of the conservation of mass equation.





Example: 3D steady, incompressible flow



Velocity components in cylindrical polar coordinates.



Stream function



Stream function property #1



Stream function property #2



Stream function in cylindrical coordinates



Example: stream function



Conservation of linear momentum



Forces acting on a differential element



Double subscript notation for stresses.



Surface forces in the x direction acting on a fluid element.



Equations of motion
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Note: these are general equations of motion for solids and fluids
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Inviscid flow



Euler’s equations for inviscid flow

Leonhard Euler 
(1707-1783)
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For inviscid flow:  σ ii = −p and τ ij =0

So, the general equations of motion become:

Or, in vector notation:
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Irrotational flow



Examples of rotational and irrotational flow

Flow around bodies

Flow through channels



The Velocity Potential



Stream Function and Velocity Potential

Relation to V: Derives from: Applies to:

Stream function, ψ Continuity 2-D flows

Velocity potential, φ Irrotationality 3-D flows� 
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Potential flow



Velocity potential in cylindrical coordinates



Example on potential flow

………………………





Viscous flow
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Equations of motion in cartesian coordinates:

We need a relationship between stresses (σij) and velocities (u, v and w)

The equations of motion include stresses (σij) and velocities (u, v and w)



Stress-deformation relationships
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Shearing stresses:

For Newtonian, incompressible fluids, stresses are linearly related to deformations



Navier-Stokes equations (cartesian)
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Stress-deformation relationships  
for an incompressible fluid (cylindrical)
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Shearing stresses:



Navier-Stokes equations (cylindrical)
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Simple solutions for viscous, incompressible fluids
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1) Steady, laminar flow between parallel plates

• Principal difficulty: nonlinearities from the convective acceleration terms. 
• Exact solution exist only for few cases



Steady, laminar flow between parallel plates (cont’d)

Boundary conditions: 
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Steady, laminar flow between parallel plates (cont’d)



Steady, laminar flow between parallel plates (cont’d)



Steady, laminar flow between parallel plates (cont’d)



Couette flow



Couette flow



Example on plane Couette flow



Example on plane Couette flow



Example on plane Couette flow



Example on plane Couette flow



Steady, laminar flow in a horizontal tube: (Hagen-Poiseuille)



Poiseuille’s law



Example: flow around a rotating cylinder







Steady, axial, laminar flow in an annulus

Derive expressions for: 
a) the axial velocity profile, u(r) 
b) the flow rate, Q 
c) the shear stress at the outer wall, τw

Assuming developed flow, the x-momentum equation of the Navier-Stokes equations is given by:
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Applying the boundary conditions u(r=ri) = u(r=ro) = 0, we come up with the final expression for the velocity distribution:
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The flow Q can then be derived by simple integration: ( ) ( )o
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The shear stress τ acting on the arterial wall is given by
or r

u
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Equation 6 can also be expressed in terms of the flow Q if we substitute for the pressure gradient from Eq. 4:
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To get a “better feeling” of the magnitude of intimal shear stress, it is convenient to normalize it with respect to the shear stress 
under laminar flow for an open artery and for the same flow Q. This is given by Poiseuille’s law:
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Hence, we can write:
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If we define i
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Eq. 9 can be rewritten in dimensionless form as:
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